Data Structures- Space and Time Complexity
Observing the time complexity of different algorithms
- Space and Time Complexity
 - Constant O(1)
 - Linear O(n)
 - Quadratic O(n^2)
 - Example of Matrix Multiplication
 - Logarithmic O(logn)
 - Exponential O(2^n)
 - Hacks
 
Space and Time Complexity
Space complexity refers to the amount of memory used by an algorithm to complete its execution, as a function of the size of the input. The space complexity of an algorithm can be affected by various factors such as the size of the input data, the data structures used in the algorithm, the number and size of temporary variables, and the recursion depth. Time complexity refers to the amount of time required by an algorithm to run as the input size grows. It is usually measured in terms of the "Big O" notation, which describes the upper bound of an algorithm's time complexity.
Why do you think a programmer should care about space and time complexity?
- ?
 
Take a look at our lassen volcano example from the data compression tech talk. The first code block is the original image. In the second code block, change the baseWidth to rescale the image.
from IPython.display import Image, display
from pathlib import Path 
# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images
def image_display(images):
    for image in images:  
        display(Image(filename=image['filename']))
if __name__ == "__main__":
    lassen_volcano = image_data(images=[{'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}])
    image_display(lassen_volcano)
    
from IPython.display import HTML, display
from pathlib import Path 
from PIL import Image as pilImage 
from io import BytesIO
import base64
# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images
def scale_image(img):
    # baseWidth = 625
    #baseWidth = 1250
    #baseWidth = 2500
    # baseWidth = 5000 # see the effect of doubling or halfing the baseWidth 
    # baseWidth = 10000 
    baseWidth = 20000
    # baseWidth = 40000
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()
    
def image_management(image):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    image['width'], image['height'] = img.size
    image['pixels'] = image['width'] * image['height']
    # Scale the Image
    img = scale_image(img)
    image['pil'] = img
    image['scaled_size'] = img.size
    image['scaled_width'], image['scaled_height'] = img.size
    image['scaled_pixels'] = image['scaled_width'] * image['scaled_height']
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
if __name__ == "__main__":
    # Use numpy to concatenate two arrays
    images = image_data(images = [{'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}])
    
    # Display meta data, scaled view, and grey scale for each image
    for image in images:
        image_management(image)
        print("---- meta data -----")
        print(image['label'])
        print(image['source'])
        print(image['format'])
        print(image['mode'])
        print("Original size: ", image['size'], " pixels: ", f"{image['pixels']:,}")
        print("Scaled size: ", image['scaled_size'], " pixels: ", f"{image['scaled_pixels']:,}")
        
        print("-- original image --")
        display(HTML(image['html']))